Problem 1.16

Measuring g
The acceleration of gravity can be measured by projecting a body upward and measuring the time that it takes to pass two given points in both directions.

Show that if the time the body takes to pass a horizontal line A in both directions is T_{A}, and the time to go by a second line B in both directions is T_{B}, then, assuming that the acceleration is constant, its magnitude is

$$
g=\frac{8 h}{T_{A}^{2}-T_{B}^{2}},
$$

where h is the height of line B above line A.

Solution

Let T_{C} be the amount of time it takes for the body to go from A to B on the left side. Because there is no air resistance, it takes the body this same amount of time to go from B to A on the right side. Also, let $v_{0 y}$ be the y-component of the initial velocity at A on the left side.

The relationship between T_{A}, T_{B}, and T_{C} is

$$
\begin{gather*}
T_{C}+T_{B}+T_{C}=T_{A} . \\
2 T_{C}=T_{A}-T_{B} \\
T_{C}=\frac{T_{A}-T_{B}}{2} . \tag{1}
\end{gather*}
$$

Apply the kinematic formula,

$$
v=v_{0}+a t,
$$

to the body's motion going from A to the top of the parabola, where the velocity is zero.

$$
\begin{gather*}
0=v_{0 y}+(-g) \frac{T_{A}}{2} \\
v_{0 y}=\frac{g}{2} T_{A} \tag{2}
\end{gather*}
$$

Now the kinematic formula,

$$
y=y_{0}+v_{0} t+\frac{1}{2} a t^{2},
$$

will be applied to the body's motion going from A to B in order to relate $h, v_{0 y}$, and T_{C}.

$$
\begin{aligned}
h & =0+v_{0 y} T_{C}+\frac{1}{2}(-g) T_{C}^{2} \\
& =v_{0 y} T_{C}-\frac{g}{2} T_{C}^{2} \\
& =\left(\frac{g}{2} T_{A}\right)\left(\frac{T_{A}-T_{B}}{2}\right)-\frac{g}{2}\left(\frac{T_{A}-T_{B}}{2}\right)^{2} \\
& =\frac{g}{4}\left(T_{A}^{2}-T_{A} T_{B}\right)-\frac{g}{2} \frac{T_{A}^{2}-2 T_{A} T_{B}+T_{B}^{2}}{4} \\
& =\frac{g}{8}\left(2 T_{A}^{2}-2 T_{A} T_{B}-T_{A}^{2}+2 T_{A} T_{B}-T_{B}^{2}\right) \\
h & =\frac{g}{8}\left(T_{A}^{2}-T_{B}^{2}\right)
\end{aligned}
$$

Therefore, solving for g,

$$
g=\frac{8 h}{T_{A}^{2}-T_{B}^{2}}
$$

